Valmet SP 取代旋轉式濃度傳訊器成功實績 二

DATE : 13/10/1999 to 19/10/1999 **COMPANY** : UNITED PAPER INDUSTRIES

ADDRESS : 20, Liu Fang Rd, Singapore 628675 Tel: +652652622 & Fax: +652663170.

CONTACT PERSONS: Mr. Eric Tan Cheng Seng (As Maintenance Manager / Electrical Division)

Mr.Cristoper (As Assistant / Electrical Division)
Mr.Lim Ah Mooi (As Production Manager / Mill Division)
Mr.Lee Kah Hock (As Senior Superintendent / Mill Division)
Mr.Tee Kim Hua (As Assistant Superintendent / Mill Division)

PARTICIPANT : -

DONE BY : Mr.Arto Leinonen (Neles Automation Bangkok)
Agus Eko Hs (Neles Automation Indonesia)

VISIT PERPOSE : Performance test of Smart-Pulp Consistency Transmitter that has been install for trial

After Machine Chest No.19

RESULT :

Job Description

Before collect the few samples for analysis to LAB

- To observed Smart-Pulp measurement it was hunting up-down from +/- 2.30 % to +/- 5.98 % while from this condition I check the power supply it was drop until +/- 13.60 VDC (The Smart-Pulp need power supply 18 VDC to 35VDC).
- Because the power supply it was drop the consistency indicating was blinking and then I turn-off the power supply for at the moment and turn-on again.
- While the load resistor used (1000 Ohm & ½ Watt) for beginning power-up the Smart-Pulp measurement it was stable by meant the output power supply from +/- 30.70 VDC become to +/- 18.45 after connected to Smart-Pulp and load resistor.
- However after +/- 10 minute the load resistor become heat and power supply drop again until 13.60 VDC and also the Smart-Pulp measurement blinking and hunting again.
- From above case I tried to solve the problem by exchange the load resistor from (1000 Ohm & ½ Watt) to (500 Ohm & 1 Watt).
- After exchange above the load resistor, output power supply from +/- 30.70 VDC become to +/- 22 VDC after connected to Smart-Pulp and now the Smart-Pulp measurement become stable.
- To collect few samples for analysis to LAB and from average analysis result compared with Smart-Pulp measurement the different it was +/- 0.1 %.

Check configuration & Calibration parameter.

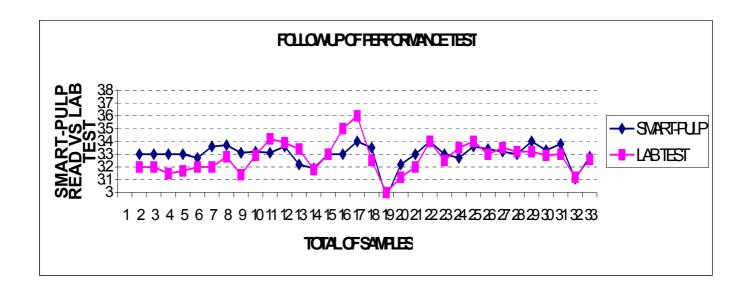
To check configuration at recipe number 3 as process data required or as follows:

RECIPE No.3

Lower range
Upper range
Damping
Units
Gram & Celsius
Mounting
Blade type
2.00 %
4.50 %
Second
Gram & Celsius
Vertical Upward
RL AISI

- To check calibration parameter with two-samples point at recipe number 3 as follows:

-Recipe number : 3 - Pulp type : RCFS - Ash : 0.0 % - P1 : 0.915 - P2 : 0.427


- But to prevent the next problems Mr.Eric Tan asked the old one power supply to exchanged with switching system power supply and load resistor from (500 Ohm & 1 Watt) to (250 Ohm & 2 Watt).
- And after exchange above the power supply and load resistor the output powers supply from +/- 24 VDC become to +/- 21.92 VDC after connected to Smart-Pulp and now the Smart-Pulp measurement become stable.
- To collect few samples again for analysis to LAB and from average analysis result compared with Smart-Pulp measurement the different it was +/- 0.11 %.
- On Thursday 14 October 1999 in the morning the machine it has shutdown +/- 16 Hrs and it will start-up at 21:00 PM.

Follow-up

While the machine beginning start-up at 21:00 PM until 05:00 AM in the morning,

- I collect few samples for analysis to LAB and from average analysis result compared with Smart-Pulp measurement and average different it was +/- 0.03 to 0.09 %. Please see below result.

No.	DATE	TIME	SMART-PULP	I AR TEST	Each	Aver.	PULP TYPE	PRODUCTS
110.	DATE	111111	OWN THE TOLK	LAD ILOI	Error	Error	RECYCLE	11000010
1	13/10/99	16:30	3.3	3.2	0.1	0.023125	ONP = 100 %	GCB' 0'
2	13/10/99	20:30	3.3	3.2	0.1		ONP = 100 %	GCB' 0'
3	13/10/99	23:50	3.3	3.15	0.15		ONP = 100 %	GCB' 0'
4	13/10/99	04:30	3.3	3.17	0.13		ONP = 100 %	GCB' 0'
5	14/10/99	21:45	3.27	3.2	0.07		ONP = 100 %	GCB' 0'
6	14/10/99	22:20	3.36	3.2	0.16		ONP = 100 %	WLCB
7	14/10/99	23:50	3.37	3.28	0.09		ONP = 100 %	WLCB
8	15/10/99	24:35:00	3.31	3.14	0.17		ONP = 100 %	WLCB
9	15/10/99	01:10	3.32	3.29	0.03		ONP = 100 %	WLCB
10	15/10/99	02:20	3.31	3.42	-0.11		ONP = 100 %	WLCB
11	15/10/99	03:10	3.36	3.39	-0.03		ONP = 100 %	WLCB
12	15/10/99	04:10	3.22	3.34	-0.12		ONP = 100 %	WLCB
13	15/10/99	05:00	3.19	3.18	0.01		ONP = 100 %	WLCB
14	16/10/99	09:10	3.3	3.3	0		ONP = 100 %	WLCB
15	16/10/99	11:10	3.3	3.5	-0.2		ONP = 100 %	WLCB
16	16/10/99	20:30	3.4	3.6	-0.2		ONP = 100 %	WLCB
17	16/10/99	23:40	3.35	3.25	0.1		ONP = 100 %	WLCB
18	16/10/99	01:50	2.96	3	-0.04		ONP = 100 %	WLCB
19	16/10/99	05:30	3.22	3.12	0.1		ONP = 100 %	WLCB
20	17/10/99	08:30	3.3	3.2	0.1		ONP = 100 %	WLCB
21	17/10/99	10:15	3.4	3.4	0		ONP = 100 %	WLCB
22	17/10/99	12:30	3.3	3.25	0.05		ONP = 100 %	WLCB
23	17/10/99	18:00	3.27	3.35	-0.08		ONP = 100 %	WLCB
24	17/10/99	21:30	3.36	3.4	-0.04		ONP = 100 %	WLCB
25	18/10/99	11:30	3.34	3.3	0.04		ONP = 100 %	WLCB
26	18/10/99	12:30	3.32	3.35	-0.03		ONP = 100 %	WLCB
27	18/10/99	13:20	3.3	3.32	-0.02		ONP = 100 %	WLCB
28	18/10/99	14:00	3.4	3.32	0.08		ONP = 100 %	WLCB
29	18/10/99	15:00	3.33	3.29	0.04		ONP 59%,OCC 15%,MW 26%	GCB 'A'
30	18/10/99	15:20	3.38	3.3	0.08		ONP 59%,OCC 15%,MW 26%	GCB 'A' VALVE = 0 %
31	18/10/99	15:23	3.11	3.12	-0.01		ONP 59%,OCC 15%,MW 26%	GCB 'A' VALVE = 100%
32	18/10/99	16:00	3.28	3.26	0.02		ONP 59%,OCC 15%,MW 26%	GCB 'A'

- As above follow-up test result it was clear that Smart-Pulp consistency transmitter performance is stable even the process it has running with mix pulp and Smart-Pulp consistency transmitter is available for use as consistency measurement on process line.

Prepare by: Accepted by customer:

Mr.Eric Tan has signed it this report.

(Agus Eko Herisusanto) (Mr.Eric Tan Cheng Seng)

DISTRIBUTION TO

(UPI / Electrical Division)				
(UPI / Mill Division)				
(UPI / Mill Division)				
(UPI / Mill Division)				
(Neles Automation Bangkok)				
(Neles Automation Bangkok)				
(Neles Automation Indonesia)				
(Neles Automation Indonesia)				
(Neles Automation Singapore)				
(Neles Automation Singapore)				
(Neles Automation Singapore)				
(Neles Automation Singapore)				

Mr.Eric Tan Cheng Seng (UPI / Electrical Division)